

Coralillo

Coralillo is an ORM (Object-Redis Mapping) for pyton. It is named after a little red snake (Coral snake) that you can find in México.

Installation

Install it via pip

$ pip install coralillo

It is good idea to manage your dependencies inside a virtualenv.

Basic Usage

from coralillo import Engine, Model, fields

Create the engine
eng = Engine()

Declare your models
class User(Model):
 name = fields.Text()
 last_name = fields.Text()
 email = fields.Text(
 index=True,
 regex='^[\w.%+-]+@[\w.-]+\.[a-zA-Z]{2,}$',
)

 class Meta:
 engine = eng

Persist objects to database
john = User(
 name='John',
 last_name='Doe',
 email='john@example.com',
).save()

Query by index
mary = User.get_by('email', 'mary@example.com')

Retrieve all objects
users = User.all()

Learn More

	Connection parameters

	Fields
	Relation fields

	Indexes

	Creating your own fields

	Validation
	Basic usage

	Default validations

	Non fillable fields

	Custom rules

	Flask Integration

	Lua scripting
	Script registering

	Multi-tenancy

	Atomic operations

	Extending

	Design desitions

	Helpers

	API

Indices and tables

	Index

	Search Page

Connection parameters

By default Engine() connects to localhost using the default port and database number 0. If you want to connect to a different host, port or database you can use an URL like in the following example:

from coralillo import Engine

HOST = 'localhost'
PORT = 6379
DB = 0

redis_url = 'redis://{host}:{port}/{db}'.format(
 host = HOST,
 port = PORT,
 db = DB,
)
eng = Engine(url=redis_url)

For more information on how to build the URL refer to https://github.com/andymccurdy/redis-py/blob/master/redis/client.py#L462 .

Another option would be to pass the configuration parameters directly like this:

from coralillo import Engine

HOST = 'localhost'
PORT = 6379
DB = 0

eng = Engine(
 host = HOST,
 port = PORT,
 db = DB,
)

For a full reference on the keyword arguments that you can pass refer to https://github.com/andymccurdy/redis-py/blob/master/redis/client.py#L490 .

Fields

Fields let you define your object’s properties and transform the values retrieved from the database, we support the following:

	fields.Text A simple text field

	fields.Hash A hashed text using bcrypt

	fields.Bool A true/false value

	fields.Integer An integer

	fields.Float A floating point value

	fields.Datetime A date and time

	fields.Location A pair of latitude/longitude

Relation fields

We also provide fields for defining relationships with other models in a ORM-fashion

	fields.SetRelation Stored as a set of the related ids

	fields.SortedSetRelation Stored as a sorteed set of the related ids, using a sotring key

	fields.ForeignIdRelation simply stores the string id of the related object

Indexes

Only Text fields are ready to be indexes

Creating your own fields

Simply subclass Field or Relation.

NORM fields follow an specific workflow to read/write from/to the redis database. Such workflow needs the following methods to be implemented (or inherited) for each field:

	__init__ for field initialization, don’t forget to call the parent’s constructor

	init is called to parse a value given in the model’s constructor

	recover is called to parse a value retrieved from database

	prepare is called to transform values or prepare them to be sent to database

	to_json should return the json-friendly version of the value

	validate is called when doing Model.validate(data) or obj.update(data)

Additionally, the following methods are needed for Relation subclasses:

	
save(value, pipeline[, commit=True])

	persists this relationship to the database

	
relate(obj, pipeline)

	sets the given object as related to the one that owns this field

	
delete(pipeline)

	tells what to do when a model with relationships is deleted

	
key()

	returns a fully qualified redis key to this relationship

	
get_related_ids()

	for subclasses of SetRelation, returns the list of related ids

	
fill()

	is called when you need to know the relationships for a model. Usually via the proxy object.

	
__contains__(obj)

	is for subclasses of SetRelation and should tell wether or not the given object is in this relation. Usually called via the proxy object.

Validation

Coralillo includes validation capabilities so you can check the data sent by a
request before creating an object.

Validation code is part of the coralillo.Form class, which is parent
of the coralillo.Model class.

Basic usage

In its simplest form, validation ensures that the data passed to the validation
function matches the field definition of the class:

from coralillo import Form, Engine, fields, errors

eng = Engine()

class MyForm(Form):
 field1 = fields.Text()
 field2 = fields.Text(required=False)

 class Meta:
 engine = eng

try:
 MyForm.validate()
except errors.ValidationErrors as ve:
 assert len(ve) == 1
 assert ve[0].field == 'field1'

data = MyForm.validate(field1='querétaro', field2='chihuahua')

assert data.field1 == 'querétaro'
assert data.field2 == 'chihuahua'

Default validations

Validation rules are built on field definition, here are some rules that are
automatically added in addition to required rule.

from coralillo import Model, Engine, fields, errors

eng = Engine()

class Base(Model):

 class Meta:
 engine = eng

Validate uniqueness of indexes
class Uniqueness(Base):
 username = fields.Text(index=True)

Uniqueness(username='foo').save()

try:
 Uniqueness.validate(username='foo')
except errors.ValidationErrors as ve:
 assert isinstance(ve[0], errors.NotUniqueFieldError)

Validate regexes
class Regex(Base):
 css_color = fields.Text(regex=r'#[0-9a-f]{6}')

try:
 Regex.validate(css_color='white')
except errors.ValidationErrors as ve:
 assert isinstance(ve[0], errors.InvalidFieldError)

Validate forbidden values
class Forbidden(Base):
 name = fields.Text(forbidden=['john'])

try:
 Forbidden.validate(name='john')
except errors.ValidationErrors as ve:
 assert isinstance(ve[0], errors.ReservedFieldError)

Validate allowed values
class Allowed(Base):
 name = fields.Text(allowed=['john'])

try:
 Allowed.validate(name='maría')
except errors.ValidationErrors as ve:
 assert isinstance(ve[0], errors.InvalidFieldError)

Non fillable fields

Sometimes you might want to prevent a field from being filled or validated using
the coralillo.Form.validate(), in that case the keyword argument
fillable of a field will do the trick.

from coralillo import Form, Engine, fields, errors

eng = Engine()

class MyForm(Form):
 field1 = fields.Text(fillable=False)

 class Meta:
 engine = eng

data = MyForm.validate(field1='de')

assert data.field1 is None

Custom rules

You can add custom rules to your forms or models to make even more complicated
validation rules. Simply apply the coralillo.validation.validation_rule()
decorator to a function in your class and write your code so that it raises the
appropiate subclass of coralillo.errors.BadField as shown in the
example.

from coralillo import Form, Engine, fields, errors
from coralillo.validation import validation_rule

eng = Engine()

class Myform(Form):
 password = fields.Text()
 confirmation = fields.Text()

 @validation_rule
 def confirmation_matches(data):
 if data.password != data.confirmation:
 raise errors.InvalidFieldError(field='confirmation')

try:
 MyForm.validate(password='foo', confirmation='var')
except errors.ValidationErrors as ve:
 assert ve[0].field == 'confirmation'

Flask Integration

There is a module for that!

$ pip instal flask-coralillo

The following example creates a simple flask application that creates and lists objects.

app.py
from flask import Flask, request, redirect
from flask_coralillo import Coralillo
from coralillo import Model, fields

app = Flask(__name__)

engine = Coralillo(app)

class Car(Model):
 name = fields.Text()

 class Meta:
 engine = engine

@app.route('/')
def list_cars():
 res = '<h1>Cars</h1>'

 for car in Car.get_all():
 res += '{}'.format(car.name)

 res += '<h3>Add car</h3>' + \
 '<form method="POST">' + \
 '<input name="name">' + \
 '<input type="submit" value="Add">' + \
 '</form>'

 return res

@app.route('/', methods=['POST'])
def add_car():
 newcar = Car.validate(**request.form.to_dict()).save()

 return redirect('/')

if __name__ == '__main__':
 app.run()

Now if you run python app.py and you visit http://localhost:5000 you will be able to intercact with your brand new Flask-Coralillo application.

Lua scripting

Coralillo uses a few lua scripts to atomically run certain operations. These can be accessed through the engine’s lua object. Here are the available scripts:

	
engine.lua.drop(args=[pattern])

	Deletes all keys matching pattern from the database. Specially useful in tests.

	
engine.lua.allow(args=[objspec], keys=[allow_key])

	Adds objspec to the permission tree stored at allow_key

Script registering

You can add your own scripts using Coralillo’s lua interface like this:

from coralillo import Engine

eng = Engine()

script = 'return ARGV[1]'

eng.lua.register('my_script', script)

assert eng.lua.my_script(args=['hello']) == b'hello'

	
Lua.register(scriptname, scriptbody)

	Registers script defined by scriptbody (a string) so it is accessible through the lua interface of the engine under the name scriptname.

Multi-tenancy

It is often useful to have objects of the same class stored within different namespaces, for example when running an application that serves different clients and you don’t want them to be in the same place.

For this case Coralillo has a Model subclass called BoundedModel that lets you specify a prefix for your models:

from coralillo import Engine, BoundedModel, fields

eng = Engine()

current_namespace = 'coral'

class User(BoundedModel):
 name = fields.Text()

 @classmethod
 def prefix(cls):
 # here you may have your own way of determining the __bound__
 # depending on the context. We will just return a variable's
 # value
 return current_namespace

 class Meta:
 engine = eng

models are saved in the namespace given by the context
juan = User(name='Juan').save()
assert eng.redis.exists('coral:user:members')

changing the context changes how models are found
current_namespace = 'nauyaca'
assert User.get(juan.id) is None

pepe = User(name='Pepe').save()
assert eng.redis.exists('nauyaca:user:members')

Atomic operations

Describe which of the operations are done atomically

Extending

How to extend

Design desitions

for example why table names are singular

Helpers

Currentry three helpers exist:

API

Index

 _
 | D
 | E
 | F
 | G
 | K
 | L
 | R
 | S

_

 	
 	__contains__() (built-in function)

D

 	
 	delete() (built-in function)

E

 	
 	engine.lua.allow() (built-in function)

 	
 	engine.lua.drop() (built-in function)

F

 	
 	fill() (built-in function)

G

 	
 	get_related_ids() (built-in function)

K

 	
 	key() (built-in function)

L

 	
 	Lua.register() (built-in function)

R

 	
 	relate() (built-in function)

S

 	
 	save() (built-in function)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/coralillo.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Coralillo

 		
 Connection parameters

 		
 Fields

 		
 Relation fields

 		
 Indexes

 		
 Creating your own fields

 		
 Validation

 		
 Basic usage

 		
 Default validations

 		
 Non fillable fields

 		
 Custom rules

 		
 Flask Integration

 		
 Lua scripting

 		
 Script registering

 		
 Multi-tenancy

 		
 Atomic operations

 		
 Extending

 		
 Design desitions

 		
 Helpers

 		
 API

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

